DPP - Daily Practice Problems


Chapter-wise Sheets

Date : Start Time :	End Time :
CHE	MISTRY (CC21)
SYLLABUS : p-Bloo	ck Elements (Group 15, 16, 17 and 18)
Max. Marks : 180 Marking Scheme :	+ 4 for correct & (-1) for incorrect Time : 60 min .
INSTRUCTIONS : This Daily Practice Problem Shee Darken the correct circle/ bubble in the Response of 1. The brown ring test for NO_2^- and NO_3^- is due formation of complex ion with a formula (a) $[Fe(H_2O)_6]^{2+}$ (b) $[Fe(NO)(CN)_5]^{2+}$ (c) $[Fe(H_2O)_5NO]^{2+}$ (d) $[Fe(H_2O)(NO)_5]^{2+}$ (c) $[Fe(H_2O)_5NO]^{2+}$ (d) $[Fe(H_2O)(NO)_5]^{2+}$ 2. Which of the following shows nitrogen with its inco- order of oxidation number? (a) $NO < N_2O < NO_2 < NO_3^- < NH_4^+$ (b) $NH_4^+ < N_2O < NO_2 < NO_3^- < NO$ (c) $NH_4^+ < N_2O < NO < NO_2 < NO_3^-$ (d) $NH_4^+ < NO < N_2O < NO_2 < NO_3^-$ 3. Which one of the following is the correct decreasing of boiling point? (a) $H_2Te > H_2O > H_2Se > H_2S$	c to the (b) $H_2O>H_2S>H_2Se>H_2Te$ (c) $H_2Te>H_2Se>H_2O$ (d) $H_2O>H_2Te>H_2Se>H_2O$ (d) $H_2O>H_2Te>H_2Se>H_2S$ 4. The true statement for the acids of phosphorus. H_3PO_2 , H_3PO_3 , and H_3PO_4 is : (a) the order of their acidity is $H_3PO_4 < H_3PO_3 < H_3PO_2$ (b) all of them are reducing in nature (c) all of them are tribasic acids (d) the geometry of phosphorus is tetrahedral in all the three
Response Grid 1. abcd 2. ab)cd 3. abcd 4. abcd 5. abcd
	and the provide the second secon

. Space for Rough Work .

Get More Learning Materials Here : 📕

c-82

6. The nitrogen oxides that contain(s) N–N bond(s) is /are

(i)
$$N_2O$$
 (ii) N_2O_3 (iii) N_2O_4 (iv) N_2O_5

- (a) (i),(ii) (b) (ii),(iii),(iv)
- (c) (iii), (iv) (d) (i), (ii) and (iii)
- 7. The geometry of ClO_3^- according to valence shell electron

pair repulsion (VSEPR) theory will be

- (a) planar triangle (b) pyramidal
- (c) tetrahedral (d) square planar
- 8. It is possible to obtain oxygen from air by fractional distillation because
 - (a) oxygen is in a different group of the periodic table from nitrogen
 - (b) oxygen is more reactive than nitrogen
 - (c) oxygen has higher b.p. than nitrogen
 - (d) oxygen has a lower density than nitrogen
- 9. Which of the following is the most basic oxide?

(a)
$$Sb_2O_3$$
 (b) Bi_2O_3 (c) ScO_2 (d) Al_2O_3

- 10. Which compound is used in photography?
 - (a) Na_2SO_5 (b) $Na_2S_2O_8$
 - (c) $Na_2S_2O_6$ (d) $Na_2S_2O_3$
- 11. The oxyacid of phosphorous in which phosphorous has the lowest oxidation state is
 - (a) hypophosphorous acid
 - (b) orthophosphoric acid
 - (c) pyrophosphoric acid
 - (d) metaphosphoric acid
- 12. Which of the following statements is not valid for oxoacids of phosphorus?
 - (a) Orthophosphoric acid is used in the manufacture of triple superphosphate.
 - (b) Hypophosphorous acid is a diprotic acid.

(c) All oxoacids contain tetrahedral four coordinated phosphorus.

DPP/CC21

- (d) All oxoacids contain atleast one P = O and one P -- OH group.
- 13. Which one of the following reactions of xenon compounds is not feasible?
 - (a) $3XeF_4 + 6H_2O \longrightarrow 2Xe + XeO_3 + 12HF + 1.5O_2$
 - (b) $2XeF_2 + 2H_2O \longrightarrow 2Xe + 4HF + O_2$
 - (c) $XeF_6 + RbF \longrightarrow Rb[XeF_7]$
 - (d) $XcO_3 + 6HF \longrightarrow XcF_6 + 3H_2O$
- 14. The compound of sulphur that can be used as refrigerant is
 (a) SO₂
 (b) SO₃
 (c) S₂Cl₂
 (d) H₂SO₄
- 15. Which of the following on thermal decomposition gives oxygen gas ?
 - (a) Ag_2O (b) Pb_3O_4
 - (c) PbO_2 (d) All of these
- 16. Which of the following statements are correct?
 - (i) Arsenic and antimony arc metalloids.
 - (ii) Phosphorus, arsenic and antimony are found mainly as sulphide minerals.
 - (iii) Covalent radii increases equally from N to Bi.
 - (iv) Elements of group 15 have extra stability and higher ionisation energy due to exactly half filled ns²np³ electronic configuration.
 - (v) In group 15 elements only nitrogen is gas whereas all others are solids.
 - (a) (i), (iv) and (v) (b) (ii), (iii) and (iv)
 - (c) (i), (ii) and (iii) (d) (ii), (iii) and (v)
- 17. The formation of $O_2^+[PtF_6]^-$ is the basis for the formation of xenon fluorides. This is because
 - (a) O_2 and Xc have comparable sizes
 - (b) both O_2 and Xc arc gases
 - (c) O_2 and Xe have comparable ionisation energies
 - (d) Both (a) and (c)

GPUD 1	11.abcd	7. abcd 12.abcd 17.abcd	8. abcd 13.abcd	9. abcd 14.abcd	10. abcd 15. abcd
--------	---------	-------------------------------	--------------------	--------------------	----------------------

Space for Rough Work

DPP/CC21

18. Oxidation of thiosulphate by iodine gives 25. The molecule having smallest bondangle is : (a) tetrathionate ion (b) sulphide ion (a) NCl₃ (b) AsCl₃ (c) SbCl₃ (c) sulphate ion 19. The hybridization in ICI. (a) sp^3d^3 (b) $d^2sp^3d^3$ 20. Match the columns. Column-I A. Pb₃O₄ B. N,O C. Mn₂O₇ D. Bi,O3 (a) A-I; B-II; C-III(b) A - IV; B - I; C - II(c) A-III; B-II; C-I(d) A-IV; B-III; C-21. Which one of the follow the correct picture of the (i) $F_2 > Cl_2 > Br_2 > l_2$: (ii) $F_2 > Cl_2 > Br_2 > l_2$: (iii) $F_2 > Cl_2 > Br_2 > l_2$: (iv) $F_2 > Cl_2 > Br_2 > l_2$: (a) (ii) and (iv) (c) (ii)and(iii) 22. Which of the following (a) Na_2O_2 (b) BaO 23. Shape of XeOF₄ is (a) octahedral (c) pyramidal 24. Which among the follow (a) Cl_2O (b) ClO_2 18.(RESPONSE 23.(GRID 28.(

c-83

(d) PCl₃

	(d)	sulphite ion	26.	Which one of the following orders correctly represents the
1, is				increasing acid strengths of the given acids?
23	(c)	sp^3d (d) sp^3		(a) $HOCIO < HOCI < HOCIO_3 < HOCIO_2$
		• /2.00.0 •		(b) HOCIO ₂ < HOCIO ₃ < HOCIO < HOCI
		Column-II		(c) $HOCIO_3 < HOCIO_2 < HOCIO < HOCI$
	L	Neutral oxide		(d) HOCI < HOCIO < HOCIO, < HOCIO,
	Ш.	Acidic oxide	27.	The ease of liquefaction of noble gases increases in the
	Ш.	Basic oxide		order
		Mixed oxide		(a) Hc <nc<ar<kr<xc< td=""></nc<ar<kr<xc<>
I · D	-IV			(b) Xe <kr<ne<ar<he< td=""></kr<ne<ar<he<>
'	-III			(c) $Kr < Xe < He < Ne < Ar$
IV; I				(d) $Ar < Kr < Xc < Nc < Hc$
- I; D			28.	A certain compound (X) when treated with copper sulphate
		angements does not give		solution yields a brown precipitate. On adding hypo
		indicated against it?		solution, the precipitate turns white. The compound is
		g power		(a) K_2CO_3 (b) KI (c) KBr (d) K_3PO_4
			29.	Which of the following species is not a pseudo halide
		n gain enthalpy issociation energy		(a) CNO (b) RCOO (c) OCN (d) NNN
			30,	Which of the following is used to produce and sustain
. Ele		egativity.		powerful superconducting magnets to form an essential part
		(i) and (iii)		of NMR spectrometer ?
ia -		(ii), (iii)and(iv)		(a) Ar (b) Ne (c) Rn (d) He
		c oxide?	31.	The product obtained as a result of a reaction of nitrogen
) ₂	(C)	Na_2O (d) Fc_2O_3		with CaC ₂ is
	4.5			(a) $Ca(CN)_2$ (b) $CaCN$ (c) $CaCN_3$ (d) Ca_2CN
		square pyramidal	32.	Which of the following noble gases has the highest negative
		T-shaped		electron gain enthalpy value?
wing	g is pa	aramagnetic?		(a) Helium (b) Krypton
$)_2$	(c)	Cl_2O_7 (d) Cl_2O_6		(c) Argon (d) Neon
(a)	ЫC)d 19.abcd	20.	abcd 21.abcd 22. abcd
<u> </u>	DC DC			abcd 26.abcd 27. abcd
	DC DC			
9	90			
		C	ough	Work

Get More Learning Materials Here :

10004

C-84	4		DPP/ CC21
33.	Gascous HCl is a poor conductor of electricity while its	39.	The shape of XcO_2F_2 molecule is
	aqueous solution is a good conductor this is because		(a) trigonal bipyramidal (b) square planar
	(a) H_2O is a good conductor of electricity		(c) tetrahedral (d) sec-saw
	(b) a gas cannot conduct electricity but a liquid can	40.	Number of lone pairs of electrons on Xe atoms
	(c) HCl gas does not obey Ohm's law, whereas the solution		XeF_2 , XeF_4 and XeF_6 molecules are respectively
	does		(a) $3, 2$ and 1 (b) $4, 3$ and 2 (d) $2, 2$ and 0
	(d) HCI ionises in aqueous solution	41	(c) 2, 3 and 1 (d) 3, 2 and 0
34.	Density of nitrogen gas prepared from air is slightly greater	41.	Match the interhalogen compounds of column-I with the geometry in column II and assign the correct code.
	than that of nitrogen prepared by chemical reaction from a		Column-I Column-II
	compound of nitrogen due to the presence of		A. XX I. T-shape
	(a) argon		B. XX' ₃ II. Pentagonal bipyramidal
	(b) carbon dioxide		C. XX' ₅ III. Linear
	(c) some N_3 molecules analogous to O_3		D. XX'_{2} IV. Square-pyramidal
	(d) greater amount of N_2 molecules derived from N-15		V. Tetrahedral
	isotope		(a) $A-III;B-I; C-IV; D-II$
35.	The correct order of acidic strength is		(b) $A-V; B-IV; C-III; D-II$
	(a) $Cl_2O_7 > SO_2 > P_4O_{10}$		(c) $A - IV; B - III; C - II; D - I$
	(b) $CO_2 > N_2O_5 > SO_3$		(d) $A - III; B - IV; C - I; D - II$
	(c) $Na_2O > MgO > Al_2O_3$	42.	The crystals of ferrous sulphate on heating give :
	(d) $K_2O > CaO > MgO$		(a) $FcO+SO_2+H_2O$
36.	Sulphur trioxide can be obtained by which of the following		
	reaction :		(b) $FeO+SO_3 + H_2SO_4 + H_2O$
	(a) $CaSO_4 + C \xrightarrow{\Delta}$ (b) $Fe_2(SO_4)_3 \xrightarrow{\Delta}$		(c) $Fe_2O_3 + SO_2 + H_2SO_4 + H_2O$
	(c) $S + H_2SO_4 \xrightarrow{\Delta}$ (d) $H_2SO_4 + PCI_5 \xrightarrow{\Lambda}$		(d) $Fc_2O_3 + H_2SO_4 + H_2O$
		43.	One mole of fluorine is reacted with two moles of hot and
37.	The correct order of increasing bond angles in the following		concentrated KOH. The products formed are KF, H ₂ O and
	species are :		O_2 . The molar ratio of KF, H_2O and O_2 respectively is
	(a) $Cl_2O < ClO_2 < ClO_2^-$		(a) 1:1:2 (b) 2:1:0.5
		44.	(c) 1:2:1 (d) 2:1:2 A greenish yellow gas reacts with an alkali metal hydroxide
	(b) $CIO_2 \leq CI_2O \leq CIO_2^-$		to form a halate which can be used in fire works safety
	(c) $Cl_2O < ClO_2^- < ClO_2$		matches. The gas and halate respectively are (a) Br KBrO (b) Cl KClO
	(d) $CIO_{2}^{-} < CI_{2}O < CIO_{2}$		(a) Br_2KBrO_3 (b) $Cl_2, KClO_3$ (c) $l_2, NalO_3$ (d) $Cl_2, NaClO_3$
38.	Which one of the following oxides of chlorine is obtained	45.	Yellowanimoniun sulphide is
20.	by passing dry chlorine over silver chlorate at 90°C?		(a) $(NH_4)_2S_8$ (b) $(NH_4)_2S_8$
	(a) Cl_2O (b) ClO_3 (c) ClO_2 (d) ClO_4		(c) $(NH_4)_2S_x$ (d) $(NH_4)_2S_4$
	33. ⓐⓑⓒⓓ 34. ⓐⓑⓒⓓ	35	abcd 36.abcd 37. abcd
	G RID 38. ⓐⓑⓒⓓ 39. ⓐⓑⓒⓓ		
	43.abcd 44.abcd	45.	
	Suma for D		0/1.

- Space for Rough Work .

DAILY PRACTICE PROBLEMS

CHEMISTRY SOLUTIONS

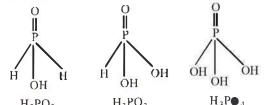
8.

9.

DPP/CC21

1. (c) $[Fc(H_2O)_5NO]^{2+}$ ion is formed. 2. (c) Compound O.S. of N

Compound	O.S. of N
N ₂ O	+ 1
NÖ	+2
NO ₂	+4
NO ₃ ⁻	+5
NH ⁺	-3
T1 C ' '	1 6


Therefore increasing order of oxidation state of N is:

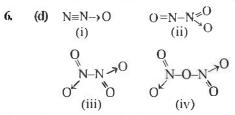
$$NH_{4}^{+} < N_{2}O < NO < NO_{2} < NO_{3}^{-}$$

3. (d) Among the hydrides of group 16 elements, boiling point of H_2O is higher than H_2S (difference in boiling points of H_2O and H_2S is around 200°C) because of strong intermolecular hydrogen bonding. After the decrease in boiling point from H_2O to H_2S , from H_2S to H_2Tc , it increases due to increase in size of the atoms from S to Te which increases the magnitude of van der Waal's forces among the molecules. So, the correct order of boiling points is

$$H_{\gamma}O > H_{\gamma}Te > H_{\gamma}Se > H_{\gamma}S$$

4. (d) (i) The geometry of phosphorus is tetrahedral in all the three.

$$H_{3}^{+1}PO_{2} < H_{3}^{+3}PO_{3} < H_{3}^{+5}PO_{4}$$


(iii) H₃PO₄ is not reducing.

number of central atom

(iv) H₃PO₃ is diabasic, while H₃PO₂ is monobasic.

5. (b) HO- \dot{P} -H it can form two series of salts by

replacement of H attached to oxygen

7. (b) Hybridisation is sp³ and shape pyramidal

$$\begin{bmatrix} \vdots \bigcirc \vdots & \vdots \bigcirc \vdots \\ \vdots \bigcirc \vdots & \vdots \bigcirc \vdots \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \vdots \bigcirc \vdots & \vdots \\ \vdots \bigcirc \vdots & \vdots \bigcirc \vdots \\ \vdots \bigcirc \vdots & \vdots \bigcirc \vdots \end{bmatrix}$$

- (c) Air is liquified by making use of the joule-Thomson effect (cooling by expansion of the gas). Water vapour and CO₂ are removed by solidification. The remaining constituents of liquid air i.e., liquid oxygen and liquid nitrogen are separated by means of fractional distillation (b.p. of $O_2 = -183^{\circ}C$: b. P. of $N_2 = -195.8^{\circ}C$).
- (b) More the oxidation state of the central atom (metal) more is its acidity. Hence SeO_2 (O. S. of Se = +4) is acidic. Further for a given O.S., the basic character of the oxides increases with the increasing size of the central atom. Thus Al_2O_3 and Sb_2O_3 are amphoteric and Bi_2O_3 is basic.

11.

(a) Hypophosphorous acid is H_3PO_2 in which O.S. of P is +1.

12. (b)
$$\begin{bmatrix} 0 \\ H - P - H \\ 0 \\ H \end{bmatrix}$$
 Hypophosphorous acid (H₃PO₂) is a

monobasic acid. i.e., it has only one ionisable hydrogen atom or one OH is present.

- 13. (d) The products of the concerned reaction react each other forming back the reactants. $XeF_6 + 3H_2O \longrightarrow XeO_3 + 6HF$.
- (a) Due to large enthalpy of vaporisation SO₂ can be used as refrigerant.
- **15.** (d) $2Ag_2O(s) \rightarrow 4Ag(s) + O_2(g)$ $2Pb_2O_4(s) \rightarrow 6PbO(s) + O_2(g)$ $2PbO_2(s) \rightarrow 2PbO(s) + O_2(g)$
- 16. (a) Phosphorus occurs in minerals of the apatite family, $Ca_9(PO_4)_6$, CaX_2 (X = F, Cl or OH) which are main components of phosphate rocks whereas arsenic and antimony are found as sulphide minerals. The increase in covalent radii from N to P is greater in comparison to increase from As to Bi.
- (d) (i) The first ionization energy of xenon (1, 170 kJ mol⁻¹) is quite close to that of dioxygen (1,180 kJ mol⁻¹).
 - (ii) The molecular diameters of xenon and dioxygen are almost identical.

Based on the above similarities Barlett (who prepared $O_2^{+}[PtF_6]^{-}$ compound) suggested that since oxygen combines with PtF₆, so xenon should also form similar compound with PtF₆.

Get More Learning Materials Here :

DPP/CC21

18. (a)
$$2S_2O_3^{2-}+l_2 \rightarrow S_4O_6^{2-}+2I^-$$

Tetrathionate
19. (a) ICl₇. The hybridisation is $\frac{1}{2}(7+7+0-0)=7$ (sp³d³)
20. (b)
21. (c) From the given options we find option (i) is correct. The oxidising power of halogens follow the order

21. (c) From the given options we find option (i) is correct. The oxidising power of halogens follow the order $F_2 > Cl_2 > Br_2 > I_2$. Option (ii) is incorrect because it in not the correct order of electron gain enthalpy of halogens.

The correct order is $Cl_2 > F_2 > Br_2 > l_2$. The low value of F_2 than Cl_2 is due to its small size.

Option (iii) is incorrect. The correct order of bond dissociation energies of halogens is

 $Cl_2 > Br_2 > F_2 > l_2$.

Option (iv) is correct. It is the correct order of electronegativity values of halogens. Thus option (ii) and (iii) are incorrect.

- (c) Oxides which are more ionic in nature (salt like) are known as saline oxides e.g. oxides of alkali metals.
- **23.** (b) $XcOF_4$ square pyramidal.
- 24. (b) ClO₂ contains 7 + 12 i.e. 19 electrons (valence) which is an odd number, i.e. there is (are) free electron(s). Hence it is paramagnetic in nature.
- 25. (c) All the members form volatile halides of the type AX₃. All halides are pyramidal in shape. The bond angle decreases on moving down the group due to decrease in bond pair-bond pair repulsion.

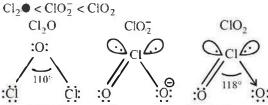
- 26. (d) $HOCl_{+1} < HOCl_{+3} < HOCl_{2} < HOCl_{3}$ In case of oxyacids of similar element as the oxidation number of the central atom increases, strength of acid also increases.
- (a) As size increases, van der Waal's forces of attraction between noble gas atoms also increases. Consequently, ease of their liquefaction increases.
- 28. (b) KI reacts with $CuSO_4$ solution to produce cuprous iodide (white precipitate) and I₂ (which gives brown colour). Iodine reacts with hypo (Na₂S₂O₃.5H₂O) solution. Decolourisaiton of solution shows the appearance of white precipitate.

$$2\text{CuSO}_4 + 4\text{Kl} \rightarrow 2\text{K}_2\text{SO}_4 + \underbrace{2\text{CuI}}_{\substack{\text{CuProus iodide}\\(\text{White ppt.})}} + \underbrace{l_2}_{\substack{\text{(Brown colour in solution)}}}$$

$$2Na_2S_2O_3 + I_2 \longrightarrow Na_2S_4O_6 + 2Nal$$

Sod. tetra
thionate
(colourle sc)

- 30. (d)
- 31. (a) (Bonus)


 $CaC_2 + N_2 \rightarrow Ca(CN)_2 + C$

32. (d) Electron gain enthalpy for noble gases is positive and it becomes less positive with increase in size of atom. Value of electron gain enthalpy

s-59

He- 48 kJmol⁻¹, Nc-116 kJmol⁻¹ Ar, $Kr - 96 kJmol^{-1}$, $Xc - 77 kJmol^{-1}$ Hence, Nc has highest negative electron gain cuthalpy.

- (d) In gascous state the HCl is covalent in nature while in aqueous solution it ionises to give H⁺ and Cl⁻ ions.
- 4. (a) Air contains about 1% inert gases, mainly Ar (At. wt = 40). The atomic wt. of N_2 is 28.
- (a) Non-metallic oxides are acidic and acidic character decreases with decreasing non-metallic character.
- 36. (b) $\operatorname{Fe}_2(\operatorname{SO}_4)_3 \xrightarrow{\Lambda} \operatorname{Fe}_2\operatorname{O}_3 + \operatorname{SO}_3$
- 37. (c) The correct order of increasing bond angle is $C_{1} = C_{1} C_{1} = C_{1} C_{1}$

* In ClO_2^- there are 2 lone pairs of electrons present on the central chlorine atom. Therefore the bond angle

in ClO_2^- is less than 118° which is the bond angle in ClO_2 which has less number of electrons on central chlorine atom.

38. (c) Pure ClO_2 is obtained bypassing dry Cl_2 over Ag ClO_3 at 90°C.

$$2\Lambda gClO_3 + Cl_2(dry) \xrightarrow{90^{\circ}C} 2\Lambda gCl + 2ClO_2 + O_2$$

39. (d) XeO_2F_2 has trigonal bipyramidal geometry, but due to presence of lone pair of electrons on equitorial position, its actual shape is *see-saw*.

- 40. (a) XeF_2 XeF_4 XcF_6 Valence electrons of Xe 8 8 8 Electrons involved 2 4 6 in bond formation Lone pairs left 3 2 1
- 41. (a) $XX' \rightarrow Linear (e.g. CIF, BrF)$ $XX_3' \rightarrow T-Shape(e.g. CIF_3, BrF_3)$ $XX_5' \rightarrow Square pyramidal (e.g. BrF_5 IF_5)$ $XX_7' \rightarrow Pentagonal bipyramidal (e.g. IF_7)$

42. (c)
$$FcSO_4.7H_2O \rightarrow FcSO_4+7H_2O$$

$$2FeSO_4 \longrightarrow Fe_2O_3 + SO_2 + SO_3$$

43. (b) $2F_2 + 4KOH \rightarrow 4KF + O_2 + 2H_2O$ for 1 mole of F_2 the molar ratio.

$$\begin{array}{ccccc} F_2 & \text{KOH} & \text{KF} & \text{O}_2 & \text{H}_2\text{O} \\ 1 & 2 & 2 & \frac{1}{2} & 1 \end{array}$$

- 44. (b) 3Cl₂+6KOH → KClO₃+5KCl+3H₂O
 KClO₃ is used in fire works and safety matches and Cl₂ is greenish yellow gas.
- 45. (c) Yellow ammonium sulphide is $(NH_4)_2S_x$.

Get More Learning Materials Here :

CLICK HERE

